Floyd

问题描述

求无向图中各点之间的最短路径长度和对应的最短路径。如果有多条最短路径,给出一条即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include <stdio.h>
#define MAXV 100

int D[MAXV][MAXV] = {0};
int min_path[MAXV][MAXV] = {0};

void Floyd(int A[MAXV][MAXV], int n)
{
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
{
min_path[i][j] = -1;
if(i == j)
{
D[i][j] = 0;
continue;
}
if(A[i][j])
{
D[i][j] = A[i][j];
}
else
{
D[i][j] = 99; // a very large number, more than any of A[i][j]
}

}

for (k = 0; k < n; k++)
{
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
if (D[i][j] > (D[i][k] + D[k][j]))
{
D[i][j] = D[i][k] + D[k][j];
min_path[i][j] = k;
}
}
}

// print shortest path from i to j
void print_shortest_path(int i, int j)
{
printf("shortest path from %d to %d is ", i, j);
printf("%d ->", i);
while(min_path[i][j] != -1)
{
printf(" %d ->", min_path[i][j]);
i = min_path[i][j];
}
printf(" %d\n", j);
}

int main()
{
int n = 7;
int A[MAXV][MAXV] = {
{0, 1, 0, 1, 1, 0, 0},
{1, 0, 1, 1, 0, 0, 0},
{0, 1, 0, 1, 1, 0, 0},
{1, 1, 1, 0, 1, 0, 0},
{1, 0, 1, 1, 0, 1, 0},
{0, 0, 0, 0, 1, 0, 1},
{0, 0, 0, 0, 0, 1, 0}
};

// shortest path
Floyd(A, n);
int a = 2;
int b = 6;
printf("shortest path length from %d to %d is %d\n", a, b, D[a][b]);
for (int i = 0; i < n; i++)
{
for (int j = i; j < n; j++)
{
printf("shortest path length from %d to %d is %d\n", i, j, D[i][j]);
// print_shortest_path(i, j);
}
}

return 0;
}